Crystal and Molecular Structure of 2,3-Dichloro-5-ethylamino-6methoxypyrazine

By David R. Carter and F. Peter Boer,* \dagger Dow Chemical U.S.A., Midland, Michigan 48640, U.S.A.

Abstract

The crystal structure of the title compound has been determined from three-dimensional diffractometer data. Crystals are monoclinic, space group $P 2_{1} / c$, with unit cell parameters $a=9 \cdot 167 \pm 0 \cdot 003 . b=12 \cdot 558 \pm 0 \cdot 005$, $c=8.602 \pm 0.003 \AA, \beta=99.46 \pm 0.02^{\circ}, Z=4$. The structure was solved by Patterson and Fourier methods and refined by full-matrix least-squares to $R 4 \cdot 3 \%$ for 1885 observed reflections. Bond angles and distances indicate a preferred resonance structure.

This X-ray diffraction investigation was directed toward establishing the positional isomer and detailed aspects of the structure for the title compound. We also wished to obtain data for studies of the relation of molecular geometry to herbicidal and fungicidal activity. ${ }^{1}$ The crystal structure determination showed the material to be 2,3-dichloro-5-ethylamino-6-methoxypyrazine. It was synthesized by heating under reflux trichloromethoxypyrazine with 70% aqueous ethylamine for 3 h with a dry-ice condenser and crystals were isolated (after quenching) by extraction with benzene and precipitation with hexane. The structure analysis established that amination had occurred adjacent to the methoxy-substituent, to yield the ortho-dichloro-isomer.

DISCUSSION

The molecular structure and atom numbering system are shown in Figure 1, ${ }^{\mathbf{2}}$ and bond distances and angles in

Figure 1 The molecule; ellipsoids represent 50\% probability of occupancy, and hydrogen atoms are shown as spheres of diameter $0 \cdot 1 \AA$

Table 1. All nine hydrogen atoms were successfully located in chemically reasonable positions.
The molecule is predominantly planar with the ethylamino-group bent out of the nominal least-squares

[^0]plane ${ }^{3}$ (through the ring atoms and the atoms directly bonded to the ring) given by $7 \cdot 132 x+6 \cdot 749 y+$ $3.682 z-1.822=0$. Deviations (\AA) from this plane are, (a) atoms included in the least-squares calculation: (i) ring, $\mathrm{N}(1) 0.005, \mathrm{C}(1)-0.013, \mathrm{C}(2) 0.005, \mathrm{~N}(2) 0.017$,

TABLE 1
Bond distances (\AA) and angles (deg.) with errors in parentheses
(a) Distances

$\mathrm{N}(1)-\mathrm{C}(1)$	$1 \cdot 345(2)$	$\mathrm{C}(4)-\mathrm{O}(1)$	$1 \cdot 342(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 354(3)$	$\mathrm{O}(1)-\mathrm{C}(7)$	$1 \cdot 439(2)$
$\mathrm{C}(2)-\mathrm{N}(2)$	$1 \cdot 335(2)$	$\mathrm{N}(3)-\mathrm{H}(3)$	$0 \cdot 85(2)$
$\mathrm{N}(2)-\mathrm{C}(3)$	$1 \cdot 322(2)$	$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	$1 \cdot 02(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 435(2)$	$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	$0 \cdot 87(3)$
$\mathrm{C}(4)-\mathrm{N}(1)$	$1 \cdot 293(2)$	$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	$0.97(3)$
$\mathrm{C}(1)-\mathrm{Cl}(1)$	$1 \cdot 731(2)$	$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	$1 \cdot 01(2)$
$\mathrm{C}(2)-\mathrm{Cl}(2)$	$1 \cdot 737(2)$	$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	$0 \cdot 91(3)$
$\mathrm{C}(3)-\mathrm{N}(3)$	$1 \cdot 336(2)$	$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	$0 \cdot 98(3)$
$\mathrm{N}(3)-\mathrm{C}(5)$	$1 \cdot 455(3)$	$\mathrm{C}(7)-\mathrm{H} 7 \mathrm{~B})$	$0 \cdot 97(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 480(3)$	$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	$0 \cdot 99(3)$
$(b) \mathrm{Angles}$			
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$121 \cdot 3(2)$	$\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	$108(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	$122 \cdot 9(2)$	$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	$103(2)$
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)$	$117 \cdot 3(2)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	$111(1)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$118 \cdot 8(2)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	$112(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)$	$122 \cdot 9(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	$108(2)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)$	$116 \cdot 7(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	$109(2)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{Cl}(1)$	$115 \cdot 9(1)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	$114(2)$
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{Cl}(2)$	$115 \cdot 8(1)$	$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	$107(2)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{N}(3)$	$121 \cdot 4(2)$	$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	$111(2)$
$\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{C}(5)$	$123 \cdot 4(2)$	$\mathrm{H}(6 \mathrm{~B})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	$108(2)$
$\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	$112 \cdot 2(2)$	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	$113(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	$115 \cdot 1(2)$	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	$105(2)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{O}(1)$	$121 \cdot 9(2)$	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	$110(2)$
$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(7)$	$117 \cdot 3(1)$	$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	$105(2)$
$\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{H}(3)$	$120(1)$	$\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	$116(2)$
$\mathrm{C}(5)-\mathrm{N}(3)-\mathrm{H}(3)$	$117(1)$	$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	$108(2)$
$\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	$111(1)$		

$\mathrm{C}(3)-0.006$, and $\mathrm{C}(4) 0.014$; (ii) substituents, $\mathrm{Cl}(1)$ $-0.040, \mathrm{Cl}(2) 0.034, \mathrm{~N}(3)-0.057$, and $\mathrm{O}(1) 0.042$; (b) atoms not included in the calculation: $C(5)-0 \cdot 133$, $\mathrm{C}(6)-0 \cdot 856$, and $\mathrm{C}(7) \quad 0 \cdot 020$. The dihedral angle between the plane of the pyrazine ring and that of the ethylamino-group is 30.5° as given by a clockwise rotation about the $\mathrm{N}(3)-\mathrm{C}(5)$ bond looking toward $\mathrm{N}(3)$. The methoxy-atoms are nearly coplanar with the ring, dihedral angle 0.9°.
The crystal packing is shown stereoscopically in Figure 2. The molecular plane lies in the $\{2,2,1\}$ family
${ }^{2}$ ORTEP, a FORTRAN thermal ellipsoid plot program, C. K. Johnson, Oak Ridge National Laboratory, Oak Ridge, Tennessee, Report ORNL-3794, June 1965.
${ }^{3}$ J. Gvildys, ' Least-squares Plane and Line Fitter,' Program Library B125, Argonne National Laboratory, Argonne, Illinois. See V. Schomaker, J. Waser, R. E. Marsh, and G. Bergman, Acta Cryst., 1959, 12, 600.
of crystal lattice planes to form a staggered arrangement which allows the bulky substituents of one molecule to fit into the open areas between substituents on its neighbour. Intermolecular contacts $<3.7 \AA$ are listed in Table 2. All distances are equal to or greater than the sums of the van der Waals radii (4) except

pyrazine resonance may be disturbed to give some localization of double bonds. Expected values for bonds in the pyrazine ring are: $\mathrm{C}-\mathrm{N} 1 \cdot 33, \mathrm{C}-\mathrm{C}$ (un- and mono-substituted) $1 \cdot 38$, and $\mathrm{C}-\mathrm{C}$ (disubstituted) $1 \cdot 41-$ $1.47 \AA$, depending upon the bulkiness of the substituents. ${ }^{6-9} \quad \mathrm{C}(1)-\mathrm{C}(2)(1.354 \AA)$ and $\mathrm{N}(1)-\mathrm{C}(4)(1.293 \AA)$

Figure 2 Packing of molecules in unit cell. Origin is left lower rear corner with positive x to the right, y vertical, and z forward
$\mathrm{N}(2) \cdots \mathrm{H}(3)$, which may represent a weak interaction along the c-glide $[\mathrm{N}(2) \cdots \mathrm{N}(3) 3 \cdot 311 \AA]$. The sum of the van der Waals radii ${ }^{4}$ is $2 \cdot 7 \AA$, which $\mathrm{N}(2) \cdots \mathrm{H}(3)$

Table 2
Close intermolecular distances (\AA)

$\mathrm{H}(3) \cdot \cdots \mathrm{N}\left(2^{\mathrm{I}}\right)$	$2 \cdot 469$	$\mathrm{N}(2) \cdots \mathrm{O}\left(1^{\text {VIIII }}\right.$)	3-195
$\mathrm{H}(5 \mathrm{~B}) \cdots \mathrm{O}\left(\mathbf{1}^{\text {II }}\right)$	$2 \cdot 785$	$\mathrm{C}(3) \cdots \mathrm{O}\left(1^{\mathrm{VIII}}\right)$	$3 \cdot 274$
$\mathrm{H}(6 \mathrm{C}) \cdots \mathrm{N}\left(\mathbf{l}^{\mathrm{III}}\right)$	$3 \cdot 013$	$\mathrm{N}(2) \cdot \mathrm{N}\left(3^{\mathrm{VIII}}\right)$	$3 \cdot 311$
$\mathrm{H}(6 \mathrm{~B}) \cdots \mathrm{Cl}\left(2^{\text {rV }}\right)$	$3 \cdot 020$	$\mathrm{N}(3) \cdots \mathrm{O}\left(1^{\mathrm{Jx}}\right)$	$3 \cdot 364$
$\mathrm{H}(5 \mathrm{~B}) \cdots \mathrm{Cl}\left(2^{\text {IV }}\right)$	3.059	$N(1) \cdots \mathrm{C}\left(6^{\mathrm{x}}\right)$	$3 \cdot 409$
$\mathrm{H}(7 \mathrm{~B}) \cdots \mathrm{Cl}\left(\mathrm{l} \mathrm{V}^{\prime}\right.$	$3 \cdot 065$	$\mathrm{C}(5) \cdots \mathrm{O}\left(\mathrm{l}^{\text {II }}\right)$	$3 \cdot 470$
$\mathrm{H}(6 \mathrm{C}) \cdots \mathrm{Cl}\left(2^{\text {I }}\right.$)	$3 \cdot 076$	$\mathrm{Cl}(1) \cdots \mathrm{C}\left(7^{\mathrm{VII}}\right)$	$3 \cdot 473$
$\mathrm{H}(5 \mathrm{~B}) \cdots \mathrm{N}\left(3^{\text {II }}\right)$	3.094	$\mathrm{Cl}(1) \cdots \mathrm{O}\left(1^{\mathrm{VII}}\right)$	$3 \cdot 485$
$\mathrm{H}(7 \mathrm{C}) \cdots \mathrm{N}\left(\mathbf{l}^{\mathbf{V}}\right)$	3-124	$\mathrm{N}(1) \cdots \mathrm{C}\left(7^{\mathrm{V}}\right)$	3.525
$\mathrm{H}(7 \mathrm{~A}) \cdots \mathrm{Cl}\left(1^{\mathrm{VI}}\right)$	$3 \cdot 156$	$\mathrm{C}(1) \cdots \mathrm{Cl}\left(\mathbf{1}^{\mathrm{XI}}\right)$	3.557
$\mathrm{H}(6 \mathrm{~B}) \cdots \mathrm{N}\left(1^{\text {III }}\right)$	3-164	$\mathrm{C}(3) \cdots \mathrm{C}\left(7{ }^{\mathrm{VIII}}\right)$	$3 \cdot 580$
$\mathrm{H}(6 \mathrm{C}) \cdots \mathrm{N}\left(2^{\mathrm{I}}\right)$	3-169	$\mathrm{N}(3) \cdots \mathrm{C}(7 \mathrm{II})$	$3 \cdot 594$
$\mathrm{H}(7 \mathrm{~B}) \cdots \mathrm{N}\left(3^{\mathrm{I}}\right)$	3.171	$\mathrm{Cl}(1) \cdots \mathrm{C}\left(7^{\mathrm{V}}\right)$	$3 \cdot 612$
$\mathrm{H}(7 \mathrm{~B}) \cdots \mathrm{Cl}\left(\mathbf{1}^{\mathrm{VI}}\right)$	3.184	$\mathrm{Cl}(2) \cdots \mathrm{C}\left(5^{\mathrm{XIII}}\right)$	$3 \cdot 674$

Roman numeral superscripts denote the following equivalent positions relative to the reference molecule at x, y, z.
$\begin{array}{ll}\text { I } x, \frac{1}{2}-y, \frac{1}{2}+z & \text { VII } 1-x,-\frac{1}{2}+y, \frac{1}{2}-z \\ \text { II } x, \frac{1}{2}-y,-\frac{1}{2}+z & \text { VIII } x, \frac{1}{2}-y,-z\end{array}$
II $x, \frac{1}{2}-y,-\frac{1}{2}+z$
III $-x, \frac{1}{2}+y, \frac{1}{2}-z$
IV $-x, \frac{1}{2}+y,-\frac{1}{2}-z$
IX $x, \frac{1}{2}-y,-\frac{1}{2}+z$
$\mathrm{V} 1-x,-y, 1-z$
$\mathrm{X}-x,-\frac{1}{2}+y, \frac{1}{2}-z$
VI $1-x, \frac{1}{2}+y, \frac{1}{2}-z$
$\underset{\mathrm{XII}}{\mathrm{XI}}-x,-y,-z$

$$
+1-n,-2, y,-2=3
$$

$2 \cdot 469 \AA$ represents a reduction of only 8%. However, X-ray diffraction generally gives systematically short bond lengths for hydrogen atoms, and if we assume ${ }^{5}$ $1.01 \AA$ instead of $0.85 \AA$ for the $\mathrm{H}(3)-\mathrm{N}(3)$ bond length, the $\mathrm{H}(3) \cdots \mathrm{N}(2)$ contact becomes $2 \cdot 3 \AA$, representing a more substantial 16% reduction. The near-linearity $\left(173^{\circ}\right)$ of the $\mathrm{N}(3)-\mathrm{H}(3) \cdots \mathrm{N}(2)$ angle also supports the presence of an interaction.

The bond distances (Table l) indicate that the normal
${ }^{4}$ L. Pauling, ' The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, 1960, p. 260.
${ }^{5}$ (a) Chem. Soc. Special Publ., No. 11, 1958, p. 565; (b) P. Coppens and A. Vos, Acta Cryst., 1971, B27, 146.
${ }^{6} 7$ P. J. Wheatley, Acta Cryst., 1957, $10,182$.
${ }^{7}$ D. T. Cromer, J. Phys. Chem., 1962, 61, 254.
${ }^{8}$ F. L. Hirschfeld and G. M. J. Schmidt, J. Chem. Phys., 1962, 26, 923 .
are considerably shortened, although the latter is shorter than the $1 \cdot 23-1 \cdot 26 \AA$ found ${ }^{10,11}$ for $\mathrm{C}=\mathrm{N}$ in other compounds. Carbon-nitrogen single bonds involving $s p^{3}$ carbons average $1.47 \AA,{ }^{5}$ which agrees well with the $1.455 \AA$ found for $\mathrm{N}(3)-\mathrm{C}(5)$. The $\mathrm{N}(3)-\mathrm{C}(3)$ distance $(1.336 \AA)$ however, is intermediate between $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}=\mathrm{N}$, and agrees well with values for the resonant $\mathrm{C}-\mathrm{N}$ bonds in pyrazine itself. The observed bond distances thus suggest an important contribution to the bonding from the resonance structure (I).

Table 3 gives root-mean-square components of vibration along the principal axes of the thermal

Table 3
Root-mean-square components (\AA) of thermal displacement along ellipsoid principal axes, with estimated standard deviations in parentheses

		Intermediate	
Atom	Major axis	axis	Minor axis
$\mathrm{N}(1)$	$0 \cdot 236(3)$	$0 \cdot 193(2)$	$0 \cdot 176(2)$
$\mathrm{C}(1)$	$0 \cdot 264(3)$	$0 \cdot 190(3)$	$0 \cdot 170(2)$
$\mathrm{C}(2)$	$0 \cdot 258(3)$	$0 \cdot 203(3)$	$0 \cdot 166(2)$
$\mathrm{N}(2)$	$0 \cdot 234(3)$	$0 \cdot 207(2)$	$0 \cdot 170(2)$
$\mathrm{C}(3)$	$0 \cdot 227(3)$	$0 \cdot 196(3)$	$0 \cdot 159(2)$
$\mathrm{C}(4)$	$0 \cdot 222(3)$	$0 \cdot 195(3)$	$0 \cdot 163(2)$
$\mathrm{Cl}(1)$	$0 \cdot 322(1)$	$0 \cdot 247(1)$	$0 \cdot 178(1)$
$\mathrm{Cl}(2)$	$0 \cdot 318(1)$	$0 \cdot 255(1)$	$0 \cdot 175(1)$
$\mathrm{N}(3)$	$0 \cdot 264(2)$	$0 \cdot 196(3)$	$0 \cdot 172(2)$
$\mathrm{C}(5)$	$0 \cdot 328(3)$	$0 \cdot 197(3)$	$0 \cdot 190(3)$
$\mathrm{C}(6)$	$0 \cdot 308(3)$	$0 \cdot 252(3)$	$0 \cdot 192(3)$
$\mathrm{O}(1)$	$0 \cdot 250(2)$	$0 \cdot 198(2)$	$0 \cdot 185(2)$
$\mathrm{C}(7)$	$0 \cdot 262(3)$	$0 \cdot 220(3)$	$0 \cdot 193(3)$

[^1]ellipsoids. A least-squares analysis ${ }^{\mathbf{1 2}}$ determined the degree to which the motion could be described by a rigid-body assumption, and the magnitude of corrections in bond distances thus imposed.

If the ring atoms and those atoms bonded directly to them are assumed to form the rigid body, the root-meansquare. $\Delta U_{i j}$ is quite small ($0.0011 \AA^{2}$), maximum $0.0027 \AA^{2}$ (see ref. 13, p. 449 for a discussion of U and β values in anisotropic motion). Bond-distance corrections, with the rigid-body assumption are: $\mathrm{C}(5)-\mathrm{C}(6)$ $0.001 ; \mathrm{C}(3)-\mathrm{N}(3) 0.002$; $\mathrm{N}(1)-\mathrm{C}(1), \mathrm{N}(1)-\mathrm{C}(4), \mathrm{N}(3)-\mathrm{C}(5)$, $\mathrm{C}(4)-\mathrm{O}(1)$, and $\mathrm{C}(7)-\mathrm{O}(1) 0.003$; $\mathrm{N}(2)-\mathrm{C}(3)$ and $\mathrm{C}(1)-\mathrm{Cl}(1)$ $0.004, \mathrm{~N}(1)-\mathrm{C}(1), \mathrm{C}(1)-\mathrm{C}(2)$, and $\mathrm{C}(2)-\mathrm{Cl}(2) 0.005$; and $C(3)-C(4) 0.006 \AA$. If all heavy atoms are assumed to be part of the rigid body (a poor assumption) the root-mean-square $\Delta U_{i j}$ is much higher $\left(0.0039 \AA^{2}\right)$, maximum $0.0160 \AA^{2}$ for U_{22} of $\mathrm{C}(5)$.

EXPERIMENTAL

Data Collection.-A well-formed prism $(0.70 \times 0.24 \times$ 0.52 mm) was mounted in a capillary and preliminary

Intensity data were collected for 2231 reflections by use of the $\theta-2 \theta$ scan technique. Monochromatic (orientedgraphite) Mo- K_{α} radiation was used. Attenuators prevented counting rates $>12,000 \mathrm{~s}^{-1}$. The take-off angle was 3°, and counter aperture $6.0 \times 6.0 \mathrm{~mm}$, placed 30 cm from the crystal; 1.5 mm diameter incident- and exit-beam collimators restricted stray radiation. The scan speed was $2^{\circ} \mathrm{min}^{-1}$ over 2θ angles of $2^{\circ}+\Delta$, where Δ is the separation of the K_{α} doublet; this range was sufficient to allow for the observed mosaic spread of the crystal. Stationary-crystal-stationary-counter background counts of 10 s were taken at each end of the scan. The reciprocal lattice was recorded out to $\sin \theta 0 \cdot 461$, equivalent to the $\mathrm{Cu}-K_{\alpha}$ sphere. A test reflection monitored every 50 measurements showed no significant variation. An error $\sigma(I)=\left[(0.02 I)^{2}+N_{0}+\right.$ $\left.k^{2} N_{\mathrm{b}}\right]^{\frac{1}{2}}$ was assigned to the net intensity $I=N_{0}-k N_{\mathrm{b}}$ of each reflection in order to establish the weights $w(F)=$ $4 F^{2} / \sigma^{2}\left(F^{2}\right)$ for subsequent least-squares refinement, in which the quantity $\Sigma w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ was minimized $\left(N_{0}\right.$ is the gross count, N_{b} the background count, k the ratio of scan time to background time, and F^{2} intensities corrected for Lorentz and polarization effects). The 346 reflections having $I<0$ or $I / \sigma(I)<2.0$ were considered unobserved

Table 4
Final structure parameters, with standard deviations in parentheses
(a) Heavy atoms (anisotropic thermal parameters ${ }^{*}$) $\times 10^{4}$

Atom	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$\mathrm{N}(1)$	$0 \cdot 3519(2)$	$0.0337(1)$	0.2358(2)	105(2)	48(1)	107(2)	4(1)	12(2)	6(1)
C(1)	$0 \cdot 3205(2)$	-0.0159(2)	$0 \cdot 0957(2)$	119(3)	44(1)	120(3)	5 (1)	30 (2)	-2(1)
$\mathrm{C}(2)$	$0 \cdot 2205(2)$	$0 \cdot 0246(2)$	-0.0228(2)	128(3)	$51(1)$	97(3)	-4(2)	23(2)	$-5(2)$
$\mathrm{N}(2)$	$0 \cdot 1453$ (2)	$0 \cdot 1141$ (1)	-0.0084(2)	115(2)	53(1)	89(2)	3(1)	8(2)	$2(1)$
$\mathrm{C}(3)$	0-1703(2)	$0 \cdot 1631$ (1)	$0 \cdot 1295(2)$	99(2)	48(1)	87(2)	I(1)	13(2)	8(1)
C(4)	0.2799(2)	$0 \cdot 1204(1)$	$0 \cdot 2521(2)$	92(3)	47(1)	94(3)	-1(1)	12(2)	4(1)
$\mathrm{Cl}(1)$	$0 \cdot 4170$ (1)	-0.1325(1)	$0 \cdot 0773(1)$	192(9)	$59(1)$	170(1)	37(1)	26(1)	-10 (1)
$\mathrm{Cl}(2)$	$0 \cdot 1840$ (1)	-0.0372(1)	-0.2057(1)	228(1)	72(1)	109(1)	11(1)	9(1)	-26(1)
N(3)	$0.0953(2)$	$0 \cdot 2505$ (1)	$0 \cdot 1567(2)$	132(3)	$62(1)$	85(2)	27(1)	-3(2)	-2(1)
$\mathrm{C}(5)$	$-0.0215(3)$	$0 \cdot 2967$ (3)	$0.0416(3)$	154(4)	$99(2)$	101(3)	55(2)	$-3(3)$	13(2)
$\mathrm{C}(6)$	-0.1343(3)	$0 \cdot 3519(3)$	$0 \cdot 1169(3)$	136(4)	98(2)	156(4)	42(2)	$2(3)$	$-11(3)$
$\mathrm{O}(1)$	$0 \cdot 3029$ (2)	$0 \cdot 1771(1)$	$0 \cdot 3861$ (2)	132(2)	58(1)	95(2)	19(1)	$-15(2)$	$-3(1)$
C (7)	$0 \cdot 4083(3)$	$0 \cdot 1359(2)$	$0 \cdot 5145(3)$	147(4)	$69(2)$	110(3)	17(2)	$-36(3)$	-2(2)

(b) Hydrogen atoms (isotropic thermal parameters)

Atom	x	y	z	B
$\mathrm{H}(3)$	$0.114(2)$	$0.281(2)$	$0.245(3)$	$4.3(5)$
$\mathrm{H}(5 \mathrm{~A})$	$-0.059(3)$	$0.245(2)$	$-0.020(3)$	$6.1(7)$
$\mathrm{H}(5 \mathrm{~B})$	$0.022(3)$	$0.345(2)$	$-0.034(3)$	$6.1(6)$
$\mathrm{H}(6 \mathrm{~A})$	$-0.184(3)$	$0.298(3)$	$0.170(4)$	$9.8(9)$
$\mathrm{H}(6 \mathrm{~B})$	$-0.210(3)$	$0.384(2)$	$0.031(3)$	$5.0(5)$
$\mathrm{H}(6 \mathrm{C})$	$-0.096(4)$	$0.405(3)$	$0.184(4)$	$9.3(9)$
$\mathrm{H}(7 \mathrm{~A})$	$0.507(3)$	$0.128(2)$	$0.488(3)$	$5.7(6)$
$\mathrm{H}(7 \mathrm{~B})$	$0.417(3)$	$0.191(2)$	$0.594(3)$	$6.3(7)$
$\mathrm{H}(7 \mathrm{C})$	$0.375(3)$	$0.064(2)$	$0.545(3)$	$5.6(6)$

space-group and unit-cell data were obtained from Weissenberg photographs. The crystal was then transferred to a Picker four-circle goniostat, and aligned with c^{*} coincident with ϕ. Least-squares refinement of the goniostat angles for 13 reflections produced the final unit cell dimensions.

Crystal Data.- $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}, \quad M=222 \cdot 08$. Monoclinic, $a=9.167 \pm 0.003, \quad b=12.558 \pm 0.005, \quad c=8.602 \pm$ $0.003 \AA, \beta=99.46 \pm 0.02^{\circ}, U=976.8 \AA^{3}, D_{m}=1.51$, $Z=4, \quad D_{c}=1 \cdot 509, F(000)=456$. Space group $P 2_{1} / c$ $\left(C_{2}^{5} h\right)$ from systematic absences: $0 k 0$ for $k=2 n+1$, $h 0 l$ for $l=2 n+1$. Mo- K_{α} radiation, $\lambda=0.71069 \AA$; $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=6.282 \mathrm{~cm}^{-1}$.

[^2]and omitted from the refinement. No absorption correction was applied, but transmission coefficients vary by an estimated 10%.

Solution and Refinement of the Structure.-Because the asymmetric portion of the unit cell contained only one molecule with two chlorine atoms, the structure was solved by Patterson techniques. A point-atom sharpened vector map indicated the chlorine positions and an electrondensity difference map based on those atoms revealed the positions of the remaining non-hydrogen atoms. Atomic scattering factors were taken from ref. 14(a), those for hydrogen from ref. $14(b) . \quad R$ was then 0.26 and $R^{\prime} 0.22$
${ }^{14}$ (a) ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962, pp. 201-209; (b) R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
$\left\{R^{\prime}=\left[\Sigma w\left(F_{0}-F_{\mathrm{c}}\right)^{2} / \Sigma w F_{0}{ }^{2}\right]^{\frac{1}{2}}\right\}$. In a sequence of fullmatrix least-squares refinement cycles, the following parameters were entered successively as variables: nonhydrogen atom positions with isotropic temperature factors, ${ }^{15}$ anisotropic temperature factors ${ }^{16}$ for those atoms, and hydrogen atom positions with isotropic temperature factors. ${ }^{15}$ Four additional cycles converged at R (and R^{\prime}) 0.043 with an average change in parameters equal to 0.2% of their uncertainty in the final cycle. A final electron-density difference map showed no residual peaks $>0.3 \mathrm{e}^{-3}$. The standard errors in Tables 1,3 , and 4

* See Notice to Authors No. 7 in J.C.S. Perkin II, 1973, Index issue.
${ }^{15}$ Full-matrix isotropic least-squares refinement program for IBM 1130, by F. P. Boer and F. P. van Remoortere.
were computed ${ }^{17}$ from the variance-covariance matrix obtained in the final least-squares cycle. Table 4 lists final atomic parameters; final observed and calculated structure factors are listed in Supplementary Publication No. SUP 21084 (2 pp.).*
We thank A. H. Gulbenk, Western Division Research Laboratories, Dow Chemical Company, for the crystals.
[4/805 Received, 22nd April, 1974]
16 Program ANL FLS 14E for anistropic least-squares and structure-factor calculations, by J. Gvildys, Argonne National Laboratory, a version of ORFLS by W. R. Busing, K. O. Martin, and H. A. Levy.
${ }_{17}$ J. Gvildys, 'A FORTRAN Crystallographic Function and Error Program,' based on ORFFE, Program Library Bll5, Argonne National Laboratory.

[^0]: \dagger Present address: Central Laboratory, Dow Chemical U.S.A. l'reeport, Texas 77541, U.S.A.
 ${ }^{1}$ C. A. I. Goring (ed.), 'Organic Chemicals in the Soil Environment,' Dekker, New York, 1971.

[^1]: ${ }^{9}$ G. J. Visser, A. Vos, Ae. de Groot, and H. Wynberg, J. Amer. Chem. Soc., 1968, 90, 3253.
 ${ }_{10}$ F. P. van Remoortere and F. P. Boer, J. Chem. Soc. (B), 1971, 911.
 ${ }_{11}$ F. P. Boer and F. P. van Remoortere, J. Amer. Chem. Soc., 1970, 92, 801.

[^2]: ${ }^{12}$ V. Schomaker and K. N. Trueblood, Acta Cryst., 1968, B24, 63.
 ${ }^{63}{ }^{13}$ G. H. Stout and L. H. Jensen, ' X-Ray Structure Determination,' MacMillan, New York, 1968.

